PID演算法

2016/8/15 下午 02:21:49 次瀏覽 分類:數控設備

在程序控制中,按偏差的比例(P)、積分(I)和微分(D)進行控制的PID控制器(亦稱PID調節器)是應用最為廣泛的一種自動控制器。它具有原理簡單,易於實現,適用面廣,控制參數相互獨立,參數的選定比較簡單等優點;而且在理論上可以證明,對於程序控制的典型物件──“一階滯後+純滯後二階滯後+純滯後的控制物件,PID控制器是一種最優控制。PID調節規律是連續系統動態品質校正的一種有效方法,它的參數整定方式簡便,結構改變靈活(PIPD)。


PID演算法簡介

控制點包含三種比較簡單的PID控制演算法,分別是:增量式演算法,位置式演算法,微分先行。 這三種PID演算法雖然簡單,但各有特點,基本上能滿足一般控制的大多數要求。

PID演算法演算法種類

PID演算法PID增量式演算法

離散化公式

△u(k)= u(k)- u(k-1)

△u(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)]

進一步可以改寫成

△u(k)=Ae(k)-Be(k-1)+Ce(k-2)

對於增量式演算法,可以選擇的功能有

(1) 濾波的選擇

可以對輸入加一個前置濾波器,使得進入控制演算法的給定值不突變,而是有一定慣性延遲的緩變數。

(2) 系統的動態過程加速

在增量式演算法中,比例項與積分項的符號有以下關係:如果被控量繼續偏離給定值,則這兩項符號相同,而當被控量向給定值方向變化時,則這兩項的符號相反。

由於這一性質,當被控量接近給定值的時候,反號的比例作用阻礙了積分作用,因而避免了積分超調以及隨之帶來的振盪,這顯然是有利於控制的。但如果被控量遠未接近給定值,僅剛開始向給定值變化時,由於比例和積分反向,將會減慢控制過程。

為了加快開始的動態過程,我們可以設定一個偏差範圍v,當偏差|e(t)|< β時,即被控量接近給定值時,就按正常規律調節,而當|e(t)|>= β時,則不管比例作用為正或為負,都使它向有利於接近給定值的方向調整,即取其值為|e(t)-e(t-1)|,其符號與積分項一致。利用這樣的演算法,可以加快控制的動態過程。

(3) PID增量演算法的飽和作用及其抑制

PID增量演算法中,由於執行元件本身是機械或物理的積分儲存單元,如果給定值發生突變時,由演算法的比例部分和微分部分計算出的控制增量可能比較大,如果該值超過了執行元件所允許的最大限度,那麼實際上執行的控制增量將時受到限制時的值,多餘的部分將丟失,將使系統的動態過程變長,因此,需要採取一定的措施改善這種情況。

糾正這種缺陷的方法是採用積累補償法,當超出執行機構的執行能力時,將其多餘部分積累起來,而一旦可能時,再補充執行。

PID演算法PID位置演算法

離散公式:

u(k)=Kp*e(k) +Ki*

SHAPE \* MERGEFORMAT

+Kd*[e(k)-e(k-1)]

對於位置式演算法,可以選擇的功能有

a、濾波:同上為一階慣性濾波

b、飽和作用抑制:

PID演算法遇限削弱積分法

一旦控制變數進入飽和區,將只執行削弱積分項的運算而停止進行增大積分項的運算。具體地說,在計算Ui時,將判斷上一個時刻的控制量Ui-1是否已經超出限制範圍,如果已經超出,那麼將根據偏差的符號,判斷系統是否在超調區域,由此決定是否將相應偏差計入積分項。

PID演算法積分分離法

在基本PID控制中,當有較大幅度的擾動或大幅度改變給定值時, 由於此時有較大的偏差,以及系統有慣性和滯後,故在積分項的作用下,往往會產生較大的超調量和長時間的波動。特別是對於溫度、成份等變化緩慢的過程,這一現象將更嚴重。為此可以採用積分分離措施,即偏差較大時,取消積分作用;當偏差較小時才將積分作用投入。

另外積分分離的閾值應視具體物件和要求而定。若閾值太大,達不到積分分離的目的,若太小又有可能因被控量無法跳出積分分離區,只進行PD控制,將會出現殘差

離散化公式:當時當|e(t)|>β

q0 = Kp(1+Td/T)

q1 = -Kp(1+2Td/T)

q2 = Kp Td /T

u(t) = u(t-1) + Δu(t)

注:各符號含義如下

u(t);;;;; 控制器的輸出值。

e(t);;;;; 控制器輸入與設定值之間的誤差。

Kp;;;;;;; 比例係數。

Ti;;;;;;; 積分時間常數。

Td;;;;;;; 微分時間常數。(有的地方用"Kd"表示)

T;;;;;;;; 調節週期。

β;;;;;;; 積分分離閾值

PID演算法有效偏差法

當根據PID位置演算法算出的控制量超出限制範圍時,控制量實際上只能取邊際值U=Umax,U=Umin,有效偏差法是將相應的這一控制量的偏差值作為有效偏差值計入積分累計而不是將實際的偏差計入積分累計。因為按實際偏差計算出的控制量並沒有執行。

如果實際實現的控制量為U=U(上限值或下限值),則有效偏差可以逆推出,即:

=

然後,由該值計算積分項

微分先行PID演算法

當控制系統的給定值發生階躍時,微分作用將導致輸出值大幅度變化,這樣不利於生產的穩定操作。因此在微分項中不考慮給定值,只對被控量(控制器輸入值)進行微分。微分先行PID演算法又叫測量值微分PID演算法。公式如下:

離散化公式

參數說明同上

對於純滯後對象的補償

控制點採用了Smith預測器,使控制物件與補償環節一起構成一個簡單的慣性環節。

PID參數整定

(1) 比例係數Kp對系統性能的影響

比例係數加大,使系統的動作靈敏,速度加快,穩態誤差減小。Kp偏大,振盪次數加多,調節時間加長。Kp太大時,系統會趨於不穩定。Kp太小,又會使系統的動作緩慢。Kp可以選負數,這主要是由執行機構、感測器以控制對象的特性決定的。如果Kc的符號選擇不當物件狀態(pv)就會離控制目標的狀態(sv)越來越遠,如果出現這樣的情況Kp的符號就一定要取反。

(2) 積分控制Ti對系統性能的影響

積分作用使系統的穩定性下降,Ti小(積分作用強)會使系統不穩定,但能消除穩態誤差,提高系統的控制精度。

(3) 微分控制Td對系統性能的影響

微分作用可以改善動態特性,Td偏大時,超調量較大,調節時間較短。Td偏小時,超調量也較大,調節時間也較長。只有Td合適,才能使超調量較小,減短調節時間。


免責聲明:本文系網絡轉載,版權歸原作者所有。但因轉載眾多,無法確認真正原始作者,故僅標明轉載來源。如涉及作品版權問題,請與我們聯繫,我們將根據您提供的版權證明材料確認版權並按國家標準支付稿酬或刪除內容!本文內容為原作者觀點,並不代表本公眾號贊同其觀點和對其真實性負責。

相關資訊

    同類下暫無推薦的資訊...

共0條評論網友評論

    暫無評論,快來搶沙發吧!